CardioXNet: A Novel Lightweight Deep Learning Framework for Cardiovascular Disease Classification Using Heart Sound Recordings

نویسندگان

چکیده

The alarmingly high mortality rate and increasing global prevalence of cardiovascular diseases signify the crucial need for early detection schemes. Phonocardiogram (PCG) signals have been historically applied in this domain owing to its simplicity cost-effectiveness. In paper, we propose CardioXNet, a novel lightweight end-to-end CRNN architecture automatic five classes cardiac auscultation namely normal, aortic stenosis, mitral regurgitation valve prolapse using raw PCG signal. process has automated by involvement two learning phases. Three parallel CNN pathways implemented representation phase learn coarse fine-grained features from explore salient variable receptive fields involving 2D-CNN based squeeze-expansion. Thus, phase, network extracts efficient time-invariant converges with great rapidity. sequential residual bidirectional-LSTMs skip connection, can proficiently extract temporal without performing any feature extraction on obtained results demonstrate that proposed yields outstanding performance all evaluation metrics compared previous state-of-the-art methods up 99.60% accuracy, 99.56% precision, 99.52% recall 99.68% F1- score an average while being computationally comparable. This model outperforms works same dataset considerable margin. accuracy both primary secondary combined significantly low number parameters prediction approach makes suitable point care CVD screening resource setups memory constraint mobile devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Packet: A Novel Approach For Encrypted Traffic Classification Using Deep Learning

Network traffic classification has become significantly important with rapid growth of current Internet network and online applications. There have been numerous studies on this topic which have led to many different approaches. Most of these approaches use predefined features extracted by an expert in order to classify network traffic. In contrast, in this study, we propose a deep learning bas...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

A Novel Deep Learning Architecture for Testis Histology Image Classification

Unlike other histology analysis, classification of tubule status in testis histology is very challenging due to their high similarity of texture and shape. Traditional deep learning networks have difficulties to capture nuance details among different tubule categories. In this paper, we propose a novel deep learning architecture for feature learning, image classification, and image reconstructi...

متن کامل

Cross-modal Sound Mapping Using Deep Learning

We present a method for automatic feature extraction and cross-modal mapping using deep learning. Our system uses stacked autoencoders to learn a layered feature representation of the data. Feature vectors from two (or more) different domains are mapped to each other, effectively creating a cross-modal mapping. Our system can either run fully unsupervised, or it can use high-level labeling to f...

متن کامل

Deep Feature Learning for EEG Recordings

We introduce and compare several strategies for learning discriminative features from electroencephalography (EEG) recordings using deep learning techniques. EEG data are generally only available in small quantities, they are highdimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Our proposed techniques specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3063129